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First-order wetting transition at finite contact angle
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The wetting of a polymer brush by a melt of similar chains can have a window of complete wetting with a
classical allophobic wetting transition at low grafting densitys and an autophobic one at highs. However,
when the melt chains are much longer than the brush chains, the contact anglea goes through a nonzero
minimum where]a/]s has a jump. A self-consistent-field analysis and experimental observations indicate a
double-well disjoining pressure curve, consistent with a first-order wetting transition at finitea. The meta-
stable contact angle can become zero.
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The control of the wettability of surfaces is an importa
aspect in many research fields spanning the full spect
from fundamental science to engineering. One way to t
the wettability is to modify the surface by grafting molecul
onto them. End grafting of macromolecules onto surface
an interesting option. When the chains are ‘‘planted’’ su
that they strongly laterally interact, one obtains a so-ca
~polymer! brush. Results of a wetting study of how en
grafted polymer molecules~brush! influence the wetting of a
solid substrate by a melt of similar chains is reported in t
paper. Our theoretical and experimental results show tha
current wetting theory does not cover all possible scenar

Classical wetting theory@1,2# allows strictly for first- and
second-order wetting transitions from partial, the cont
anglea.0, to complete wetting, wherea50. For a con-
tinuous wetting transition~second order!, the contact angle
goes smoothly to zero. However, a first-order wetting tran
tion features a contact angle that is nondifferentiable at
transition. Wetting transitions at finite contact angle are
envisioned by the classical wetting theory and have ne
been reported in the literature.

Wetting problems are complex because one always sh
consider three phases. Typically, but not necessarily, on
the phases is a solid substrate. The other two phases ma
a binary liquid with a solubility gap, or a liquid with its
vapor. Usually, the wetting theory is discussed in the set
of a solid substrate in contact with a liquid-vapor system.
the present paper we discuss a solid substrate~with on top a
polymer brush! in contact with a polymer melt-vapor system

It is essential to mention that wetting transitions occurat
bulk coexistence, that is, the condition~chemical potential of
the liquid molecules! that exists when a macroscopic amou
of liquid is in equilibrium with its vapor. These should b
distinguished from~first-order! prewetting transitions. At a
prewetting transition, there is a small jump in film thickne
from a microscopic to a mesoscopic value, which occ
off-coexistence. The prewetting steps become more p
nounced when they occur closer to the coexistence value
merge with the~first-order! wetting transition where the ste
in the isotherm diverges. It is interesting to note that
number of interfaces in the system is higher when the con
angle is finite than when the contact angle is zero. It has b
argued that wetting transitions are true transitions just
cause of this reduction of the number of interfaces that
exist at coexistence@2#.
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The wetting behavior near a solid substrate onto whic
polymer brush is administered is unusual, basically beca
there are interactions on two length scales that influence
determine the overall wetting behavior@3,4#. First of all there
is the solid substrate. Interactions of the polymer chains w
this substrate are of short-range nature~the effect of long-
range van der Waals interactions will be mentioned belo!.
If the system is partially wet, the surface is allophobic w
respect to the melt. Second, there is the polymer brush. T
cally, the grafted chains may assist in obtaining a low cont
angle and in favorable cases the surface may be wetteda
50). When the melt does not wet its own brush~this occurs
as we will see, e.g., when the grafting density is too hig!,
this is known as autophobicity. The structure of the polym
brush as a function of the grafting densitys is well known.
When the end-grafted chains laterally overlap, the cha
must stretch strongly outwards and the brush height beco
a linear function of the lengthN of the chains, i.e.,H}N
@5–10#. In this limit the wetting behavior is determined b
the nature of the brush and the interactions occur on
length scale proportional to~up to! H. At intermediate graft-
ing densities,sN'1, one may expect an interplay betwee
interactions from the substrate and those originating from
brush.

According to the above, when the polymer melt does
wet the surface~i.e., the allophobic regime! one may graft
chains onto the surface to improve the wettability. The
grafted chains are typically collapsed as a globule onto
surface when the substrate is in contact with the air~vapor!.
When the melt is applied on top of the substrate, the gra
chains can assume Gaussian-like conformations and
swelling is the driving force for the wetting transition. I
order to have such swelling of the grafted chains, they sho
be accepted by the melt. Thus, there may be no entha
effects while mixing the grafted chains with the melt chain
Therefore, the grafted chains should preferably be che
cally identical to the melt chains. Upon increasing the gra
ing density of the polymer chains on the surface, it is kno
that the properties of the brush become essentially indep
dent on the substrate onto which they are grafted. This is
reason why the wetting of a brush by chemically identic
melt chains, as reported in the literature, rarely takes
properties of the surface into account. According to the
erature one should expect an autophobic wetting transit
©2002 The American Physical Society01-1
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LEERMAKERS, MAAS, AND STUART PHYSICAL REVIEW E66, 051801 ~2002!
e.g., at high grafting density. The physical origin of this w
ting transition is basically understood@11,12#. At high graft-
ing density, the chains in the brush are strongly stretch
The segment density of anisotropically stretched chains
the brush may even exceed the segment density of
~weakly compressible! melt. The chains in the polymer me
that are placed on top of the brush are in random coil c
formations. These chains can gain no free energy~in this
case they cannot gain entropy! by penetrating into the highly
oriented~and a bit denser! brush. Therefore at sufficiently
high grafting density an autophobic wetting transition is e
pected and seen experimentally@13–16#. Also in the limit of
grafting density unity, that is, when all the chains in t
brush are in the extended upright conformation, the top
the brush is an impenetrable substrate again. The poly
melt chains experience conformational entropy loss n
such a surface and this entropy loss is the reason why
polymer melt does not wet the solid substrate made
chemically identical molecules@17#. The two wetting transi-
tions ~allophobic and autophobic! discussed above depen
obviously on the properties of the solid substrate and, w
the chemical identity of the brush and the melt chains
insisted upon, on the chain length disparity between
brush chains and the melt chains. Below we will fix t
surface properties and elaborate on the effect of the c
length difference between the melt and the brush chains

Our theoretical approach is based upon a numerical s
consistent-field analysis, making use of the discretizat
scheme of Scheutjens and Fleer~SF-SCF!. This theory has
been applied to the wetting of polymer brushes before@3,18#.
The method allows for the evaluation of the equilibrium de
sity profiles of the relevant interfaces in the system as wel
an accurate evaluation of the~mean field! surface free ener
gies. In the method, only short-range nearest-neighbor c
tact energies are accounted for and parametrized by the w
known Flory-Huggins interaction parameters. The mo
system is designed such that there are minimum numbe
parameters. To this end we introduce a substrate comp
of units of type S with a fixed Fresnel-like structure: th
volume fractionwS(z)51 whenz<0 and zero otherwise (z
is thus the spatial coordinate which gives the distance to
wall; all linear dimensions are normalized to the segm
size!. Onto this interface flexible chains with lengthN com-
posed of units of the typeS, (S)N are end grafted, i.e., th
first segment is restricted toz51. The wetting component is
a melt composed of homopolymers of lengthP composed
again of segments of typeS, i.e., (S)P . The compressibility
of the melt plus brush system is realized by introducing
monomeric solvent (V)1, which may be interpreted as va
cancies. In this case the SF-SCF method is similar in spir
a classical lattice-gas theory. The only Flory-Huggins int
action parameter is the one betweenV andS, i.e., xVS. The
value used for this parameter is chosen such that
polymer-vapor system has a pronounced solubility gap,
there is a sharp polymer-vapor interface. Throughout
work a value ofxVS51 is used. The grafting density, i.e., th
number of grafted chains per unit area,s is varied but the
length of the grafted chains is fixed toN5200. The statisti-
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cal weights of chain conformations are generated by a pro
gator formalism that is the discrete version of the Edwa
diffusion equation@19#:

]G~z;s!

]s
5S l

]2

]z2 2u~z! DG~z;s!, ~1!

where s is the parameter counting the distance along
contour of the chain. This equation is complemented with
appropriate boundary~absorbing near the surface and refle
ing at a distance far from the surface! and initial conditions
~i.e., grafting condition for the brush chains!. The SF-SCF
formalism features a segment potentialu(z)5 ln@wV

b/wV(z)#
12xSV„^wV(z)&2wV

b
…. The angular brackets account for no

local interactionŝ w(z)&'w(z)1l]2w(z)/]z2 and wV
b'1.

These nonlocal contributions are essential for the cor
analysis of interfacial problems. The segment densities
low from two complementary Green’s functions, one co
puted with Eq.~1! starting from segments51 leading to
G(z;s) and, the other one starting form the other ends5N
~or P) leading to Ginv(z;s): w(z)
5Ceu(z)(sG(z;s)Ginv(z;s). The normalization for the
grafted chains is proportional to the grafting density wher
the normalization for the melt chains is fixed by the amou
Q of melt in the system.

For a particular self-consistent-field solution~which is ob-
tained numerically!, the segment potentials and the segm
densities are internally and mutually consistent. On top
this, the local volume fractions add up to unity, i.e.,wV(z)
512wS(z) for all coordinatesz. For such a SCF solution th
relevant structure of the interfacial layer may be analyz
Important for the study of wetting transitions is the accur
evaluation of the interfacial free energies. Let us refer to
vapor asV, the solid asW, and the melt asL. Then three
interfacial tensions may be defined:gWV , gWL , andgLV for
the wall-vapor, the wall-liquid, and the liquid-vapor tension
respectively. The contact angle is easily obtained fr
Young’s law:

cosa5
gWV2gWL

gLV
511

gWV2~gWL1gLv!

gLV

511
g thin2g thick

gLV
, ~2!

which defines bothg thin and g thick as two interfacial ten-
sions that are readily available from the calculations. T
remaining surface tensiongLV is found from the equilibrium
vapor-melt interface. In our calculationsgLV50.134 83 in
units of kBT per site.

In Fig. 1~a! the contact angle is plotted as a function
the grafting densitys for P5100,500. WhenP,N, there is
a window of complete wetting, i.e., the contact angle~for
P5100) is zero in the range 0.0052,s,0.122. It is evident
that the wetting transition at low grafting densities is of fir
order. Thea(s) pinches upon thea50 axis with a finite
angle. The wetting transition at high grafting densities is
second order. This is in line with recent work of Mueller an
1-2
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FIG. 1. ~a! The contact angle
of the melt with chains of lengthP
as indicated as a function of th
grafting density of the chains in
the brush.~b! The spreading pa-
rameter S5g thin2g thick as a
function of the grafting densities
for P5500, the binodal points*
as well as metastable~dotted!
parts up to the pointss8 and s9
are indicated.
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Dowell @15#. With a similar SCF technique they also repo
first- and second-order wetting transitions.

For the following analysis it is not necessary that this l
transition is indeed of second order. Long-range van
Waals forces may cause this transition to be of first orde
well without consequences for our arguments. WhenP.N,
the contact angle does not reach the wetting valuea50 and
remains finite for all values of the grafting densitys. Inter-
estingly, the curve ofa(s) is not a smooth function; there i
a sharp break ats* 50.011 316 5.

A few relevant adsorption isotherms, in which the exce
amountG'Q of polymer melt chains is given as a functio
of the chemical potential, are plotted in Fig. 2~a!. Here we
have collected results for a grafting density just below, clo
to, and just aboves* . The isotherms have a pair of van d
Waals-like loops. The one at lowestG is a residual feature o
the first-order wetting transition as found for systems w
small values ofP. The second loop at higherG is the residual
of the second-order wetting transition for smallerP. It is
necessary to understand which parts of the loops are s
and which parts are metastable or unstable. This may
investigated using the classical Maxwell constructions.
alternative is to investigate the cusplike figures found
plotting the surface free energy as a function of the chem
potential. In Fig. 2~b! the three cusped figures are show
When two lines~for a givens) in such a figure cross~in
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such a way that with increasing film thickness the chemi
potential increases and the surface free energy decrease!, a
phase transition is found. The lower branch of the surfa
free energy is always the most favorable one and repres
the stable branch.

The inspection of Fig. 2~b! shows that fors.s* there
are lines crossing at a value of the chemical potential wh
is below the saturation value. This means that there is a ju
~first-order transition! from a microscopic to a mesoscop
film thickness that occurs off-coexistence. Again this is
prewetting transition, and is similar to the classical case
sociated with the first-order wetting transition ats* . We
discussed before@3# the unusual scenario of having a prewe
ting step in the isotherm in connection with partial wettin
however, this phenomenon has not yet been associated
the wetting transition discussed in this paper. In Fig. 2~b! the
lines in the cusp cross exactly at the coexistence value
s* 50.113 165. This is the special condition which signal
true wetting transition in the system; the jump occurs at
existence. In Fig. 2~b!, the cusped figure has no crossings
lines for s50.011,s* and thus at this grafting densit
there is no jump in adsorbed amount. There exist, howe
values fors such thats* .s.0.011 for which the step in
the isotherm occurs atm.m#. These transitions may b
called postwetting transitions. We haste to mention t
postwetting transitions cannot be observed experiment
because they occur form.m#.
ed
FIG. 2. ~a! Adsorption isotherms of the excess amount of polymer melt chainsP5500 on the surface as a function of the normaliz
chemical potential for three values of the grafting density of the brush. The chemical potential at coexistence is given bym#. ~b! The
corresponding surface free energy~shifted and in units ofkBT per site! versus normalized chemical potential~in units ofkBT). The vertical
dotted line represents the coexistence values. The arrow pointing to the right gives the value ofFs5g thin , the arrow pointing to the left
givesFs5g thick .
1-3
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LEERMAKERS, MAAS, AND STUART PHYSICAL REVIEW E66, 051801 ~2002!
The curve ofFs(G) ends atm#, indicated by the vertica
dotted line. If this end point is the lowest inFs, the system
is wet. If it is not the lowest point at coexistence, the syst
is partially wet. From the cusps in Fig. 2~b! it is concluded
that all three cases correspond to partial wetting: the sur
free energy at coexistence for the thick film~indicated by the
arrows pointing to the left! is higher than the correspondin
surface free energies of the thin films~arrows pointing to the
right!. The contact angle is proportional to this differen
@see Fig. 1 and Eq.~2!#.

Results of Fig. 2 thus prove the first-order character of
transition ats* . Below the transition,s,s* , the contact
angle is found by comparison of the surface free energie
the microscopically thin and the macroscopically thick film
Above the transition, i.e., whens.s* the contact angle is
found from comparison of the surface free energies of
mesoscopically thick film in relation to the macroscopic film
Exactly at the transition, the jump in the adsorbed amo
from microscopic to mesoscopic amounts of the wett
component occurs at the coexistence value. In other word
macroscopic drop will coexist at the wetting transition w
two film thicknesses. One of these films is microscopica
thin and the other is of mesoscopic size. Associated with
first-order transition there are classical prewetting and n
classical ~experimentally inaccessible! postwetting transi-
tions. Of course the prewetting step does not diverge whe
merges with the wetting transition at coexistence because
contact angle at the transition is not zero.

The binodal for the first-order transition is located at t
transitions* . Spinodal points may also be identified as t
end points of metastable lines. Using this ansatz, the
spinodal points are referred to ass8 ands9 and are indicated
in Fig. 1~b!. In this figure the spreading parameterS is plot-
ted as a function of the grafting density. The system is p
tially wet whenS,0 and completely wet whenS>0. The
metastable branches ofS(s) curves are dotted in Fig. 1~b!.
The metastable branches were found by computing the
tact angle using the surface free energy difference betw
the ~metastable! microscopic thick film and the macroscop
thick film in the case thats.s* , and the surface free energ
difference between the~metastable! mesoscopic thick film
and the macroscopic thick film in the case thats,s* . In-
terestingly it is found that in the metastable branches
spreading parameterS can assume the complete wettin
valueS50. This means that the metastable contact angle
go to zero. It is expected that the lifetime of the metasta
wetting layers~with a50) is very long. This observation i
of importance for the understanding of dewetting kinetics
polymer films on brushes@20,21#. It is of interest to mention
that the ‘‘spinodal point’’s8 occurs exactly at the valueS
50, whereas the other points9 occurs~in this case! for S
.0. The possibility to have metastable films vanish
smoothly ats8 and the end points8 behaves as a second
order transition. Interestingly, the possibility to have me
stable states vanishes ats9 in a jumplike fashion.

If the adsorption isotherm is rotated by 90°, and when
adsorbed amountG is translated into a film thicknessd ~there
is a trivial one-to-one relation!, one obtains a so-called dis
joining pressureP vs d diagram. Fig. 2~a! thus proves that
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P(d) features a double minimum especially in the regi
where the contact angles are small. Such a disjoining p
sure curve was already anticipated by Landau and Lifs
@22#. We have experimental evidence that such a doub
minimum disjoining pressure curve exists in an experimen
system. In Fig. 3 we present an atomic force microsco
image showing a dewetting pattern of a thin polystyrene~PS!
film spin coated on a PS brush. The dewetting occurs foP
.N and at intermediate grafting densities, by the breakup
the homogeneous film such that ‘‘hills’’~small drops! form
surrounded by ‘‘holes’’ immersed in regions with intermed
ate film thickness. Throughout the mesoscopically thin fi
there are also isolated spherical holes and isolated
~drops!. Apparently, the drop can coexist with two film thick
nesses, one microscopically thin and another mesoscopic
thin. Such peculiar dewetting patterns are consistent with
SCF calculations and with a double-well character of
disjoining pressure. Direct simulations of the dewetting p
terns of thin polymer films have recently been performed
Sharma and Khanna@23#. They applied Navier-Stokes fluid
dynamics to thin films. The finite film-size effects were i
cluded by an arbitrary shape of the disjoining press
curves. Application of this method to a double-well disjoi
ing pressure diagram resulted in patterns very similar
these shown in Fig. 3. The characteristic hills and holes p
tern in an otherwise homogeneous film with intermedi
thickness does not appear when the disjoining curves
classical, i.e. when there is just a single minimum.

The wetting transition at finitea conserves the number o
interfaces and thus the argument mentioned above that
number should change at a wetting transition is inva
Moreover, the fact that one can have wetting transitions

FIG. 3. An atomic force microscopic~AFM! image of a 6
36 mm area of the dewetting patterns found when a melt of po
styrene~PS! with length P'1800 was annealed on a brush of th
same molecules. Bright spots are the highest point, the black
gions are the regions with a very thin polymer film. Experiment
silica surface was covered by a poly-4-vinylpyridine~PVP! layer.
The PS chains~end grafted on the PVP! had a lengthN'200 and a
density ofs'0.2 chains per nm2. The melt was spin coated on th
brush and annealed undervacuoat T5145° C for 12 days. More
details on the experimental conditions are found in Ref.@18#.
1-4
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FIRST-ORDER WETTING TRANSITION AT FINITE . . . PHYSICAL REVIEW E 66, 051801 ~2002!
finite contact angle damages the framework of the class
wetting theory. The classical wetting theory exclusively de
with completewetting transitions, where the adjective ‘‘com
plete’’ refers to the wetting condition ata50. The classical
wetting theory suffices when the wetting component has
teractions with the substrate essentially on one length sc
Then only complete wetting transitions can occur. If the
teractions of the wetting component with the substrate
more complex, that is, when interactions on two~or more!
distinct length scales are present, the wetting behavio
more rich than anticipated by the classical wetting theory.
a consequence, the classical wetting theory must be exte
to account forincompletewetting transitions. The adjectiv
‘‘incomplete’’ points to the wetting transitions at finite con
tact anglea.0. Such an extension is not a minor one. Wh
first-order phase transitions are considered, one typically
distinguish binodal~that is, the exact transition point! and
spinodal conditions, where the system becomes intrinsic
unstable. Between the binodal and spinodal conditions,
system is metastable. Complete wetting transitions occu
a50. As it is impossible to havea,0, it does not make
sense to discuss metastable branches or spinodal cond
in the context of complete wetting transitions. However, t
is no longer the case when a first-order wetting transit
occurs at a finitea5a* .0 ~incomplete wetting transitions!.
ol
,

a,

n

d

y,
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In this case the region 0,a,a* is accessible. As was
shown above, one can find meaningful metastable states
spinodal conditions. This finding is of large importance
understand the kinetics of dewetting. Indeed, the incomp
wetting transition~at finite contact angle! is in line with the
phase transition theory@22# and should be considered mo
classical then the complete wetting transitions ata50.

Of course there exists a rather conservative solution
save the classical wetting theory. One may decide that
wetting transition is just one member of the family of surfa
phase transitions. Wetting transitions are those surface p
transitions that deal with the change from partial to compl
wetting, that is, ata50. In this restricted view it is not
necessary to identify the difference between complete w
ting or incomplete wetting transitions as introduced abo
The first-order transition discussed in this paper is then
another surface phase transition, to be distinguished fro
wetting transition. The disadvantage of choosing for this w
out is that it is not obvious how then one shall differentia
between, e.g., surface phase transitions that occuron- or off-
coexistence. Indeed, it will prove necessary to introduce
same terminology as in wetting theory for the more gene
surface phase transitions. This type of redundancy in l
guages appears not very elegant to us.
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